document.write( "Question 346507: A furniture manufacturer can make from 30 to 60 tables a day and from 40 to 100 chairs a day. It can make at most 120 units in one day. The profit on a table is $150, and the profit on a chair is $65. How many tables and chairs should they make per day to maximize profit. How much is the maximum profit? \r
\n" ); document.write( "\n" ); document.write( "P= 150x + 65 y
\n" ); document.write( "30 <= x <= 60
\n" ); document.write( "40 <= y <= 100
\n" ); document.write( "x + y <= 120
\n" ); document.write( "x => 0
\n" ); document.write( "y => 0\r
\n" ); document.write( "\n" ); document.write( "Graph your system of inequalities
\n" ); document.write( "Label the vertices and find their coordinates
\n" ); document.write( "

Algebra.Com's Answer #247846 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Determine the vertices.
\n" ); document.write( "\"x=30\",\"y=40\"
\n" ); document.write( "(30,40)
\n" ); document.write( "\"x=60\",\"y=40\"
\n" ); document.write( "(60,40)
\n" ); document.write( "\"x%2By=120\"
\n" ); document.write( "\"30%2By=120\"
\n" ); document.write( "\"y=90\"
\n" ); document.write( "(30,90)
\n" ); document.write( "\"x%2By=120\"
\n" ); document.write( "\"60%2By=120\"
\n" ); document.write( "\"y=60\"
\n" ); document.write( "(60,60)
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "The maximum (and minimum) values occur(s) at the vertices.
\n" ); document.write( "(30,40):\"P=+150x+%2B+65y=150%2830%29%2B65%2840%29=7100\"
\n" ); document.write( "(60,40):\"P=+150x+%2B+65y=150%2860%29%2B65%2840%29=11600\"
\n" ); document.write( "(30,90):\"P=+150x+%2B+65y=150%2830%29%2B65%2890%29=10350\"
\n" ); document.write( "(60,60):\"highlight%28P=+150x+%2B+65y=150%2860%29%2B65%2860%29=12900%29\"
\n" ); document.write( "Make 60 of each to maximize profits.
\n" ); document.write( "
\n" ); document.write( "
\n" );