document.write( "Question 345958: 1/4=3-2x-1/x+2 \n" ); document.write( "
Algebra.Com's Answer #247373 by haileytucki(390)![]() ![]() You can put this solution on YOUR website! (1)/(4)=3-2x-(1)/(x)+2 All / signs stand for +- and all ~ signs stand for the square root.\r \n" ); document.write( "\n" ); document.write( "Since x is on the right-hand side of the equation, switch the sides so it is on the left-hand side of the equation. \n" ); document.write( "3-2x-(1)/(x)+2=(1)/(4)\r \n" ); document.write( "\n" ); document.write( "Add 2 to 3 to get 5. \n" ); document.write( "5-2x-(1)/(x)=(1)/(4)\r \n" ); document.write( "\n" ); document.write( "Find the LCD (least common denominator) of -2x+5-(1)/(x)+(1)/(4). \n" ); document.write( "Least common denominator: 4x\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by 4x in order to remove all the denominators from the equation. \n" ); document.write( "-2x*4x+5*4x-(1)/(x)*4x=(1)/(4)*4x\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by canceling the common factors. \n" ); document.write( "-8x^(2)+20x-4=(1)/(4)*4x\r \n" ); document.write( "\n" ); document.write( "Simplify the right-hand side of the equation by simplifying each term. \n" ); document.write( "-8x^(2)+20x-4=x\r \n" ); document.write( "\n" ); document.write( "Since x contains the variable to solve for, move it to the left-hand side of the equation by subtracting x from both sides. \n" ); document.write( "-8x^(2)+20x-4-x=0\r \n" ); document.write( "\n" ); document.write( "Since 20x and -x are like terms, add -x to 20x to get 19x. \n" ); document.write( "-8x^(2)+19x-4=0\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by -1. \n" ); document.write( "-8x^(2)*-1+19x*-1-4*-1=0*-1\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by multiplying out all the terms. \n" ); document.write( "8x^(2)-19x+4=0*-1\r \n" ); document.write( "\n" ); document.write( "Multiply 0 by -1 to get 0. \n" ); document.write( "8x^(2)-19x+4=0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=8, b=-19, and c=4. \n" ); document.write( "x=(-b\~(b^(2)-4ac))/(2a) where ax^(2)+bx+c=0\r \n" ); document.write( "\n" ); document.write( "Use the standard form of the equation to find a, b, and c for this quadratic. \n" ); document.write( "a=8, b=-19, and c=4\r \n" ); document.write( "\n" ); document.write( "Substitute in the values of a=8, b=-19, and c=4. \n" ); document.write( "x=(-(-19)\~((-19)^(2)-4(8)(4)))/(2(8))\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses. \n" ); document.write( "x=(19\~((-19)^(2)-4(8)(4)))/(2(8))\r \n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical. \n" ); document.write( "x=(19\~(233))/(2(8))\r \n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula. \n" ); document.write( "x=(19\~(233))/(16)\r \n" ); document.write( "\n" ); document.write( "First, solve the + portion of \. \n" ); document.write( "x=(19+~(233))/(16)\r \n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \. \n" ); document.write( "x=(19-~(233))/(16)\r \n" ); document.write( "\n" ); document.write( "The final answer is the combination of both solutions. \n" ); document.write( "x=(19+~(233))/(16),(19-~(233))/(16)_x=2.14,0.23 \n" ); document.write( " |