document.write( "Question 345301: The instructions on this one say to solve each of the quadratic equations by factoring and applying the property ab=0 if and only if a=0 or b=0 The problem I need help with is:\r
\n" ); document.write( "\n" ); document.write( "4x^2+29x+30=0
\n" ); document.write( "

Algebra.Com's Answer #246924 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll help you factor. I'll let you take over after that.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4x%5E2%2B29x%2B30\", we can see that the first coefficient is \"4\", the second coefficient is \"29\", and the last term is \"30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"30\" to get \"%284%29%2830%29=120\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"120\" (the previous product) and add to the second coefficient \"29\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"120\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"120\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"120\".\r
\n" ); document.write( "\n" ); document.write( "1*120 = 120
\n" ); document.write( "2*60 = 120
\n" ); document.write( "3*40 = 120
\n" ); document.write( "4*30 = 120
\n" ); document.write( "5*24 = 120
\n" ); document.write( "6*20 = 120
\n" ); document.write( "8*15 = 120
\n" ); document.write( "10*12 = 120
\n" ); document.write( "(-1)*(-120) = 120
\n" ); document.write( "(-2)*(-60) = 120
\n" ); document.write( "(-3)*(-40) = 120
\n" ); document.write( "(-4)*(-30) = 120
\n" ); document.write( "(-5)*(-24) = 120
\n" ); document.write( "(-6)*(-20) = 120
\n" ); document.write( "(-8)*(-15) = 120
\n" ); document.write( "(-10)*(-12) = 120\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"29\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11201+120=121
2602+60=62
3403+40=43
4304+30=34
5245+24=29
6206+20=26
8158+15=23
101210+12=22
-1-120-1+(-120)=-121
-2-60-2+(-60)=-62
-3-40-3+(-40)=-43
-4-30-4+(-30)=-34
-5-24-5+(-24)=-29
-6-20-6+(-20)=-26
-8-15-8+(-15)=-23
-10-12-10+(-12)=-22
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"5\" and \"24\" add to \"29\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"5\" and \"24\" both multiply to \"120\" and add to \"29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"29x\" with \"5x%2B24x\". Remember, \"5\" and \"24\" add to \"29\". So this shows us that \"5x%2B24x=29x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2%2Bhighlight%285x%2B24x%29%2B30\" Replace the second term \"29x\" with \"5x%2B24x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x%5E2%2B5x%29%2B%2824x%2B30%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%284x%2B5%29%2B%2824x%2B30%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%284x%2B5%29%2B6%284x%2B5%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B6%29%284x%2B5%29\" Combine like terms. Or factor out the common term \"4x%2B5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2%2B29x%2B30\" factors to \"%28x%2B6%29%284x%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4x%5E2%2B29x%2B30=%28x%2B6%29%284x%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B6%29%284x%2B5%29\" to get \"4x%5E2%2B29x%2B30\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider making a donation at my tutoring website. Thank you.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "
\n" );