document.write( "Question 344807: The tens digit of a certain number is 7 less than the units digit. The sum of the squares of the two digits is 85. Find the number \n" ); document.write( "
Algebra.Com's Answer #246764 by checkley77(12844)![]() ![]() ![]() You can put this solution on YOUR website! y-x=7 y=x+7 \n" ); document.write( "x^2+y^2=85 \n" ); document.write( "x^2+(x+7)^2=85 \n" ); document.write( "x^2+x^2+14x+49-85=0 \n" ); document.write( "2x^2+14x-36=0 \n" ); document.write( "(2x+18)(x-2)=0 \n" ); document.write( "x-2=0 \n" ); document.write( "x=2 \n" ); document.write( "y=2+7=9 \n" ); document.write( "92 is the answer. \n" ); document.write( "Proof: \n" ); document.write( "9^2+2*2=85 \n" ); document.write( "81+4=85 \n" ); document.write( "85=85\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |