document.write( "Question 344807: The tens digit of a certain number is 7 less than the units digit. The sum of the squares of the two digits is 85. Find the number \n" ); document.write( "
Algebra.Com's Answer #246764 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
y-x=7 y=x+7
\n" ); document.write( "x^2+y^2=85
\n" ); document.write( "x^2+(x+7)^2=85
\n" ); document.write( "x^2+x^2+14x+49-85=0
\n" ); document.write( "2x^2+14x-36=0
\n" ); document.write( "(2x+18)(x-2)=0
\n" ); document.write( "x-2=0
\n" ); document.write( "x=2
\n" ); document.write( "y=2+7=9
\n" ); document.write( "92 is the answer.
\n" ); document.write( "Proof:
\n" ); document.write( "9^2+2*2=85
\n" ); document.write( "81+4=85
\n" ); document.write( "85=85\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );