document.write( "Question 342367: A box contains two red chips and three white chips. Let X denote the number of draws until a red chip is selected.
\n" ); document.write( "(1) Find the discrete pdf for X if the chips are drawn at random, with replacement.
\n" ); document.write( "

Algebra.Com's Answer #245056 by jrfrunner(365)\"\" \"About 
You can put this solution on YOUR website!
since the drawing is with replacement
\n" ); document.write( "the probability of selecting a red is constant.
\n" ); document.write( "--
\n" ); document.write( "Let prob(red)=p=2/5 , let prob(white)=1-p=3/5
\n" ); document.write( "--
\n" ); document.write( "If X represent number of draws until the first success, ie selecting the first red,
\n" ); document.write( "then the pdf of X implies that there will be X-1 failures and the last one will be a success\r
\n" ); document.write( "\n" ); document.write( "\"P%28X=x%29=%281-p%29%5E%28x-1%29p\"=\"%283%2F5%29%5E%28x-1%29%282%2F5%29\" for x>0
\n" ); document.write( "--
\n" ); document.write( "this is the geometric probability distribution, since is sequence increases geometrically
\n" ); document.write( "
\n" );