document.write( "Question 339141: How many possible solution are there for:-
\n" );
document.write( "2x+3y+12z=180 ,where x,y, z are all positive integers???? \n" );
document.write( "
Algebra.Com's Answer #243168 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "2x + 3y + 12z = 180\r\n" ); document.write( "\r\n" ); document.write( "2x = 180 - 3y - 12z\r\n" ); document.write( "\r\n" ); document.write( "2x = 3(60 - y - 12z)\r\n" ); document.write( "\r\n" ); document.write( "Let positive integer 60-y-12z = A then\r\n" ); document.write( "\r\n" ); document.write( "So 2x = 3A\r\n" ); document.write( " 2x = 2A + A\r\n" ); document.write( " x = A + A/2\r\n" ); document.write( "x - A = A/2\r\n" ); document.write( "\r\n" ); document.write( "Since x - A is a positive integer, so is A/2, say B, and A = 2B\r\n" ); document.write( "\r\n" ); document.write( "x - A = A/2\r\n" ); document.write( "x - 2B = 2B/2\r\n" ); document.write( "x - 2B = B\r\n" ); document.write( " x = 3B\r\n" ); document.write( "\r\n" ); document.write( "---------------\r\n" ); document.write( "\r\n" ); document.write( "2x + 3y + 12z = 180\r\n" ); document.write( "\r\n" ); document.write( "3y = 180 - 2x - 12z\r\n" ); document.write( "\r\n" ); document.write( "3y = 2(90 - x - 6z)\r\n" ); document.write( "\r\n" ); document.write( "Let positive integer 90-x-6z = C then\r\n" ); document.write( "\r\n" ); document.write( "So 3y = 2C\r\n" ); document.write( " y = 2C/3\r\n" ); document.write( " \r\n" ); document.write( "Since y is a positive integer C must be divisible by 3, \r\n" ); document.write( "so C = 3D, so\r\n" ); document.write( "\r\n" ); document.write( " y = 2(3D)/3\r\n" ); document.write( " y = 2D \r\n" ); document.write( "\r\n" ); document.write( "--------------------------------\r\n" ); document.write( "So we substitute x = 3B and y = 2D into the original eqution:\r\n" ); document.write( "\r\n" ); document.write( "2x + 3y + 12z = 180\r\n" ); document.write( "\r\n" ); document.write( "2(3B) + 3(2D) + 12z = 180\r\n" ); document.write( "6B + 6D + 12z = 180\r\n" ); document.write( " B + D + 2z = 30\r\n" ); document.write( " 2z = 30 - (B + D)\r\n" ); document.write( "\r\n" ); document.write( "The largest value 2z can take on is when B and D are both as small\r\n" ); document.write( "as can be, which is 1 each, so\r\n" ); document.write( "\r\n" ); document.write( " 2z <= 30 - (1 + 1)\r\n" ); document.write( " 2z <= 28\r\n" ); document.write( " z <= 14\r\n" ); document.write( "\r\n" ); document.write( "So we know that z can take on any integer value from 1 through 14\r\n" ); document.write( "\r\n" ); document.write( " B + D = 30 - 2z\r\n" ); document.write( " B = 30 - 2z - D\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "For any of those 14 values of z, B can be chosen anywhere from 1\r\n" ); document.write( "through when D is the smallest value 1, or (30 - 2z - 1) or (29 - 2z) \r\n" ); document.write( " \r\n" ); document.write( "Therefore the number of solutions is\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |