document.write( "Question 337745: Find the rectangular equation of the curve whose parametric equations are: x=5cos 2t and y= -sin 2t, 0 =< t =< 180degrees \n" ); document.write( "
Algebra.Com's Answer #242148 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Find the rectangular equation of the curve whose parametric equations are: \n" ); document.write( "x = 5cos(2t) and y = -sin(2t) , 0 =< t = < 180degrees \n" ); document.write( "----------------------------------------------------------- \n" ); document.write( "Solve the 1st equation for \"t\": \n" ); document.write( "x = 5cos(2t) \n" ); document.write( "cos(2t) = x/5 \n" ); document.write( "2t = invcos(x/5) \n" ); document.write( "t = (1/2)invcos(x/5) \n" ); document.write( "------------------------- \n" ); document.write( "Substitute that t-value into the 2nd equation: \n" ); document.write( "y = -sin(2[(1/2)invcos(x/5)]) \n" ); document.write( "y = -sin(invcos(x/5)) \n" ); document.write( "----------- \n" ); document.write( "If invcos(x/5) is an angle whose cos is x/5 \n" ); document.write( "The sin of that angle is (sqrt(25-x^2))/5 \n" ); document.write( "--- \n" ); document.write( "So, y = -(1/5)sqrt(25-x^2) \n" ); document.write( "5y = -sqrt(25-x^2) \n" ); document.write( "Square both sides: \n" ); document.write( "25y^2 = 25-x^2 \n" ); document.write( "x^2+25y^2 = 25 \n" ); document.write( "(x^2/25) + y^2 = 1 \n" ); document.write( "========================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "========================== \n" ); document.write( " |