document.write( "Question 337399: In 2006 the population of the United States was 300.2 million (U.S. Census
\n" ); document.write( "Bureau, www.census.gov). If the population continues to grow at an annual rate of 1.05%, then the population in the year 2020 will be 300.2(1.0105)14 million.
\n" ); document.write( "a) Evaluate the expression to find the predicted population
\n" ); document.write( "in 2020 to the nearest tenth of a million people.\r
\n" ); document.write( "\n" ); document.write( "FV=PV* (1+r)^n\r
\n" ); document.write( "\n" ); document.write( "WHERE FV=FUTURE POPULATION IN 2020
\n" ); document.write( "WHERE PV =PRESENT POP 2006
\n" ); document.write( "R =RATE OF INCREASE
\n" ); document.write( "N=NUMBER OF YEARS\r
\n" ); document.write( "\n" ); document.write( "FV=?
\n" ); document.write( "PV=300.2
\n" ); document.write( "R = 1.0105%
\n" ); document.write( "N=14 YEARS\r
\n" ); document.write( "\n" ); document.write( "FV=300.2* (1+0105)^14\r
\n" ); document.write( "\n" ); document.write( "FV = 347.5 MILLIONS TO THE NEAREST TENTH
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #241985 by chiexpert(48)\"\" \"About 
You can put this solution on YOUR website!
FV=PV* (1+r)^n\r
\n" ); document.write( "\n" ); document.write( "WHERE FV=FUTURE POPULATION IN 2020
\n" ); document.write( "WHERE PV =PRESENT POP 2006
\n" ); document.write( "R =RATE OF INCREASE
\n" ); document.write( "N=NUMBER OF YEARS\r
\n" ); document.write( "\n" ); document.write( "FV=?
\n" ); document.write( "PV=300.2
\n" ); document.write( "R = 1.0105%
\n" ); document.write( "N=14 YEARS\r
\n" ); document.write( "\n" ); document.write( "FV=300.2* (1+0105)^14\r
\n" ); document.write( "\n" ); document.write( "FV = 347.5 MILLIONSS TO THE NEAREST TENTH
\n" ); document.write( "
\n" ); document.write( "
\n" );