
\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If it has any rational solutions the numerator must be\r\n" );
document.write( "a factor of 4 and the denominator must be a factor of 2,\r\n" );
document.write( "\r\n" );
document.write( "The only possible rational solutions are \r\n" );
document.write( "\r\n" );
document.write( "
,
,
, or
\r\n" );
document.write( "\r\n" );
document.write( "Trying the easiest one x = 1\r\n" );
document.write( "\r\n" );
document.write( "So we divide by x - 1, either synthetically:\r\n" );
document.write( "\r\n" );
document.write( "1|2 11 1 -10 -4\r\n" );
document.write( " | 2 13 14 4 \r\n" );
document.write( " 2 13 14 4 0\r\n" );
document.write( "\r\n" );
document.write( "or by long division \r\n" );
document.write( "\r\n" );
document.write( " 2x³ + 13x² + 14x + 4\r\n" );
document.write( "x - 1)2x4 + 11x³ + x² - 10x - 4 \r\n" );
document.write( " 2x4 - 2x³\r\n" );
document.write( " 13x³ + x²\r\n" );
document.write( " 13x³ - 13x²\r\n" );
document.write( " 14x² - 10x\r\n" );
document.write( " 14x² - 14x\r\n" );
document.write( " 4x - 4\r\n" );
document.write( " 4x - 4\r\n" );
document.write( " 0 \r\n" );
document.write( "\r\n" );
document.write( "You have now factored the original polynomial as\r\n" );
document.write( "\r\n" );
document.write( "(x - 1)(2x³ + 13x² + 14x + 4)\r\n" );
document.write( "\r\n" );
document.write( "Next let's do the same with the cubic polynomial in\r\n" );
document.write( "the second parenthesis:\r\n" );
document.write( "\r\n" );
document.write( "If it has any rational solutions the numerator must be\r\n" );
document.write( "a factor of 4 and the denominator must be a factor of 2,\r\n" );
document.write( "\r\n" );
document.write( "We've already done that. The only possible rational solutions are \r\n" );
document.write( "\r\n" );
document.write( "
,
,
, or
\r\n" );
document.write( "\r\n" );
document.write( "You could go to the trouble of trying all those. But sooner of\r\n" );
document.write( "later you'd get around to trying to divide by
or
\r\n" );
document.write( "\r\n" );
document.write( "Divide by x + .5, either synthetically:\r\n" );
document.write( "\r\n" );
document.write( "-.5|2 13 14 4\r\n" );
document.write( " | -1 -6 -4 \r\n" );
document.write( " 2 12 8 0\r\n" );
document.write( "\r\n" );
document.write( "or by long division \r\n" );
document.write( "\r\n" );
document.write( " 2x² + 12x + 8 \r\n" );
document.write( "x + .5)2x³ + 13x² + 14x + 4 \r\n" );
document.write( " 2x³ + x²\r\n" );
document.write( " 12x² + 14x\r\n" );
document.write( " 12x? + 6x\r\n" );
document.write( " 8x + 4\r\n" );
document.write( " 8x + 4\r\n" );
document.write( " 0 \r\n" );
document.write( "\r\n" );
document.write( "And you have now factored further as\r\n" );
document.write( "\r\n" );
document.write( "(x - 1)(x + .5)(2x² + 12x + 8)\r\n" );
document.write( "\r\n" );
document.write( "Now we can factor 2 out of the third parentheses:\r\n" );
document.write( "\r\n" );
document.write( "(x - 1)(x + .5)2(x² + 6x + 4)\r\n" );
document.write( "\r\n" );
document.write( "2(x - 1)(x + .5)(x² + 6x + 4)\r\n" );
document.write( "\r\n" );
document.write( "The quadratic will not factor but we can find its roots \r\n" );
document.write( "by using the quadratic formula:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the 4 roots are\r\n" );
document.write( "\r\n" );
document.write( "1,
,
, and
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "