\r\n" );
document.write( "Here is the rhombus drawn twice, once with each diagonal. The four\r\n" );
document.write( "sides of a rhombus have equal measures. Let each side have length x.\r\n" );
document.write( "Then the perimeter of the rhombus will be 4x.\r\n" );
document.write( " \r\n" );
document.write( "The drawings below are to scale:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Looking at the lower triangular half of the left drawing we use the \r\n" );
document.write( "law of cosines on triangle ABC:\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "Divide every term by 2\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "-------------------\r\n" );
document.write( "Now we look at the left triangular half of the right drawing, and\r\n" );
document.write( "we use the law of cosines again, this time on triangle ABD:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "





\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "Divide every term by 2\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "---------\r\n" );
document.write( "\r\n" );
document.write( "Here are the two equations we have found above:\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "A rhombus is a parallelogram, and the adjacent angles in a\r\n" );
document.write( "parallelogram are supplementary. Therefore the sum of the\r\n" );
document.write( "measures of angles A and B is 180°. Therefore\r\n" );
document.write( "\r\n" );
document.write( "B = 180° - A\r\n" );
document.write( "\r\n" );
document.write( "Therefore we use the identity:
,\r\n" );
document.write( "\r\n" );
document.write( "and get: \r\n" );
document.write( "\r\n" );
document.write( "cos(B) = cos(180°-A) = -cos(A) \r\n" );
document.write( "\r\n" );
document.write( "We substitute -cos(A) for cos(B) in the first equation and simplify:\r\n" );
document.write( "\r\n" );
document.write( "



\r\n" );
document.write( "



\r\n" );
document.write( "



\r\n" );
document.write( "\r\n" );
document.write( "Now we put that together with the other equation and we have this system:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "When we add those two equations term-by term, the terms on the right cancel\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "and we get:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Divide both sides by 2\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Taking positive square roots of both sides:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the perimeter is 4x or 4(17) or 68.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "