document.write( "Question 332267: Please help me with this equation, my book does not cover this fully and I am having a hard time understanding. I need to factor the perfect square expression. The problem is x^2 + 12xy + 36y^2 \n" ); document.write( "
Algebra.Com's Answer #238125 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Looking at the expression \"x%5E2%2B12xy%2B36y%5E2\", we can see that the first coefficient is \"1\", the second coefficient is \"12\", and the last coefficient is \"36\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last coefficient \"36\" to get \"%281%29%2836%29=36\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"36\" (the previous product) and add to the second coefficient \"12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"36\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"36\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,9,12,18,36\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-9,-12,-18,-36\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"36\".\r
\n" ); document.write( "\n" ); document.write( "1*36 = 36
\n" ); document.write( "2*18 = 36
\n" ); document.write( "3*12 = 36
\n" ); document.write( "4*9 = 36
\n" ); document.write( "6*6 = 36
\n" ); document.write( "(-1)*(-36) = 36
\n" ); document.write( "(-2)*(-18) = 36
\n" ); document.write( "(-3)*(-12) = 36
\n" ); document.write( "(-4)*(-9) = 36
\n" ); document.write( "(-6)*(-6) = 36\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1361+36=37
2182+18=20
3123+12=15
494+9=13
666+6=12
-1-36-1+(-36)=-37
-2-18-2+(-18)=-20
-3-12-3+(-12)=-15
-4-9-4+(-9)=-13
-6-6-6+(-6)=-12
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"6\" add to \"12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"6\" both multiply to \"36\" and add to \"12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"12xy\" with \"6xy%2B6xy\". Remember, \"6\" and \"6\" add to \"12\". So this shows us that \"6xy%2B6xy=12xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%286xy%2B6xy%29%2B36y%5E2\" Replace the second term \"12xy\" with \"6xy%2B6xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B6xy%29%2B%286xy%2B36y%5E2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B6y%29%2B%286xy%2B36y%5E2%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B6y%29%2B6y%28x%2B6y%29\" Factor out \"6y\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B6y%29%28x%2B6y%29\" Combine like terms. Or factor out the common term \"x%2B6y\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B6y%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2B12xy%2B36y%5E2\" factors to \"%28x%2B6y%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E2%2B12xy%2B36y%5E2=%28x%2B6y%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );