document.write( "Question 330593: james drives 5 miles per hour slower than ken. If James travels 100 miles in the same time that ken travels 110 miles, find each rate. solution? \n" ); document.write( "
Algebra.Com's Answer #237010 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
D=RT
\n" ); document.write( "100=(R-5)T
\n" ); document.write( "OR T=100/(R-5) FOR JAMES
\n" ); document.write( "110=RT
\n" ); document.write( "OR T=110/R FOR KEN
\n" ); document.write( "SET THESE 2 EQUATIONS EQUAL & SOLVE FOR R.
\n" ); document.write( "100/(R-5)=110/R CROSS MULTIPLY,
\n" ); document.write( "110(R-5)=100R
\n" ); document.write( "110R-550=100R
\n" ); document.write( "100R-100R=550
\n" ); document.write( "10R=550
\n" ); document.write( "R=550/10
\n" ); document.write( "R=55 MPH FOR KEN.
\n" ); document.write( "55-5=50 MPH IS THE RATE FOR JAMES.
\n" ); document.write( "110=55*T
\n" ); document.write( "T=110/55
\n" ); document.write( "T=2 HOURS.
\n" ); document.write( "PROOF:
\n" ); document.write( "100=50*2
\n" ); document.write( "100=100
\n" ); document.write( "
\n" );