document.write( "Question 330593: james drives 5 miles per hour slower than ken. If James travels 100 miles in the same time that ken travels 110 miles, find each rate. solution? \n" ); document.write( "
Algebra.Com's Answer #237010 by checkley77(12844)![]() ![]() ![]() You can put this solution on YOUR website! D=RT \n" ); document.write( "100=(R-5)T \n" ); document.write( "OR T=100/(R-5) FOR JAMES \n" ); document.write( "110=RT \n" ); document.write( "OR T=110/R FOR KEN \n" ); document.write( "SET THESE 2 EQUATIONS EQUAL & SOLVE FOR R. \n" ); document.write( "100/(R-5)=110/R CROSS MULTIPLY, \n" ); document.write( "110(R-5)=100R \n" ); document.write( "110R-550=100R \n" ); document.write( "100R-100R=550 \n" ); document.write( "10R=550 \n" ); document.write( "R=550/10 \n" ); document.write( "R=55 MPH FOR KEN. \n" ); document.write( "55-5=50 MPH IS THE RATE FOR JAMES. \n" ); document.write( "110=55*T \n" ); document.write( "T=110/55 \n" ); document.write( "T=2 HOURS. \n" ); document.write( "PROOF: \n" ); document.write( "100=50*2 \n" ); document.write( "100=100 \n" ); document.write( " |