document.write( "Question 329083: find the vertex, the line of symmetry, the maximum or minimum value of the quadratic function, and graph the function. f(x)=4x^2-40x+104 \n" ); document.write( "
Algebra.Com's Answer #235776 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Complete the square to convert to vertex form, \"y=a%28x-h%29%5E2%2Bk\" where (h,k) is the vertex.
\n" ); document.write( "\"f%28x%29=4x%5E2-40x%2B104\"
\n" ); document.write( "\"f%28x%29=4%28x%5E2-10x%29%2B104\"
\n" ); document.write( "\"f%28x%29=4%28x%5E2-10x%2B25%29%2B104-4%2825%29\"
\n" ); document.write( "\"f%28x%29=4%28x-5%29%5E2%2B4\"
\n" ); document.write( "Comparing to the equation above,
\n" ); document.write( "(h,k)=(5,4)
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "The vertex lies on the axis of symmetry, \"x=5\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "The min or max value occurs at the vertex.
\n" ); document.write( "Since the coefficient of the \"x%5E2\" term is positive, the parabola opens upwards and the vertex value is a minimum.
\n" ); document.write( "\"ymin=4\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( "
\n" );