document.write( "Question 327298: *Determine how many solutions exist
\n" );
document.write( "*Use either elimination or substitution to find the solutions (if any)
\n" );
document.write( "*Graph the two lines, labeling the x-intercepts, y-intercepts, and points of intersection \r
\n" );
document.write( "\n" );
document.write( "y = 2x + 3 and y = -x - 4
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #234465 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! Since they both equal y set them equal to each other to eliminate y. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Now use either equation to solve for y. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( "To find x intercept, set y=0 solve for x. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "(-3/2,0) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "To find y intercept, set x=0 solve for y. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "(0,3) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( "To find x intercept, set y=0 solve for x. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "(-4,0) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "To find y intercept, set x=0 solve for y. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "(0,-4) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Now plot all of that information. \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |