document.write( "Question 319748: If x+iy=(a+ib)*(a+ib)*(a+ib) then show that x/a+y/b=4(a^2-b^2)\r
\n" ); document.write( "\n" ); document.write( "PLZ help!!!!
\n" ); document.write( "

Algebra.Com's Answer #230299 by J2R2R(94)\"\" \"About 
You can put this solution on YOUR website!
x+iy = (a+ib)^3 = a^3 + 3a^2ib + 3ai^2b^2 + i^3b^3 = (a^3 - 3ab^2) + (3a^2b - b^3)i\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Comparing real and imaginary components:\r
\n" ); document.write( "\n" ); document.write( "x = a^3 - 3ab^2; x/a = a^2 - 3b^2
\n" ); document.write( "y = 3a^2b - b^3; y/b = 3a^2 - b^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x/a + y/b = 4(a^2 - b^2)
\n" ); document.write( "
\n" );