document.write( "Question 321399: A two-digit number has a tens digit 1 greater than the units digit. The sum of the number and the number formed by reversing the digits is 77. Find the number.
\n" ); document.write( "Is it 10(x + 1) + x + 10(x) + x + 1 = 77: How is it written? Thank you.
\n" ); document.write( "

Algebra.Com's Answer #230244 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
the number is 10t + u\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "t = u + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "10t + u + 10u + t = 77 ___ 11t + 11u = 77 ___ t + u = 7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "substituting ___ (u + 1) + u = 7 ___ u = 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "substituting ___ t = (3) + 1 = 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the number is 43
\n" ); document.write( "
\n" );