document.write( "Question 320194: 1) Solve for m: 2 log (3m) = 2\r
\n" );
document.write( "\n" );
document.write( "2) Find the exact value of sin e if cot e = 5 \n" );
document.write( "
Algebra.Com's Answer #229350 by nyc_function(2741)![]() ![]() You can put this solution on YOUR website! For question 1, we use the fact that y = log_b (x) if and only if b^(y) = x.\r \n" ); document.write( "\n" ); document.write( "Let b = 10^2\r \n" ); document.write( "\n" ); document.write( "Let x = (3m)^2\r \n" ); document.write( "\n" ); document.write( "We now have the following equation:\r \n" ); document.write( "\n" ); document.write( "10^2 = (3m)^2\r \n" ); document.write( "\n" ); document.write( "100 = 9m^2\r \n" ); document.write( "\n" ); document.write( "100/9 = m^2\r \n" ); document.write( "\n" ); document.write( "11.11111111 = m^2\r \n" ); document.write( "\n" ); document.write( "Take square root of both sides.\r \n" ); document.write( "\n" ); document.write( "sqrt{11.11111111} = sqrt{m^2}\r \n" ); document.write( "\n" ); document.write( "3.3333333333 = m\r \n" ); document.write( "\n" ); document.write( "The decimal number 3.333333333 can be written as 10/3 as the value of m.\r \n" ); document.write( "\n" ); document.write( "Did you follow?\r \n" ); document.write( "\n" ); document.write( "========================================================================\r \n" ); document.write( "\n" ); document.write( "For the trig question, the first thing to notice is that sine and cotagent are both positive, which means we are in quadrant 1.\r \n" ); document.write( "\n" ); document.write( "We are in quadrant 1 using a right triangle to find the hypotenuse via the famous Pythagorean Theorem.\r \n" ); document.write( "\n" ); document.write( "cot(e) = 5 = 5/1\r \n" ); document.write( "\n" ); document.write( "sin(e) = 1/(hyp)\r \n" ); document.write( "\n" ); document.write( "Also keep in mind:\r \n" ); document.write( "\n" ); document.write( "cotangent = adj/opp\r \n" ); document.write( "\n" ); document.write( "sine = opp/hyp\r \n" ); document.write( "\n" ); document.write( "We need to find the hypotenuse of the right triangle formed in quadrant 1.\r \n" ); document.write( "\n" ); document.write( "1^2 + 5^2 = (hyp)^2\r \n" ); document.write( "\n" ); document.write( "26 = (hyp)^2\r \n" ); document.write( "\n" ); document.write( "We now take the square root of both sides.\r \n" ); document.write( "\n" ); document.write( "sqrt{26} = sqrt{(hyp)^2}\r \n" ); document.write( "\n" ); document.write( "sqrt{26} = hypotenuse\r \n" ); document.write( "\n" ); document.write( "Are you with me so far?\r \n" ); document.write( "\n" ); document.write( "==========================================\r \n" ); document.write( "\n" ); document.write( "Since we now know the value of the hypotenuse, we can plug that into \n" ); document.write( "sin(e) = 1/(hyp), which becomes sin(e) = 1/sqrt{26}.\r \n" ); document.write( "\n" ); document.write( "It is never a good idea to leave a radical in the denominator of a fraction.\r \n" ); document.write( "\n" ); document.write( "We now need to rationalize the denominator. This is done to remove the radical from the denominator.\r \n" ); document.write( "\n" ); document.write( "To do so, multiply the TOP and BOTTOM by the sqrt{26}.\r \n" ); document.write( "\n" ); document.write( "sin(e) = 1/sqrt{26} times [sqrt{26}/sqrt{26}]\r \n" ); document.write( "\n" ); document.write( "sin(e) = sqrt{26}/26\r \n" ); document.write( "\n" ); document.write( "Did you follow?\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |