document.write( "Question 319179: Factor the following polynomial completely. (If the polynomial cannot be factored, enter PRIME.) \r
\n" ); document.write( "\n" ); document.write( "-x^2+16x+57\r
\n" ); document.write( "\n" ); document.write( "Someone help me solve this.
\n" ); document.write( "

Algebra.Com's Answer #228527 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"-x%5E2%2B16x%2B57\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-%28x%5E2-16x-57%29\" Factor out the GCF \"-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"x%5E2-16x-57\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2-16x-57\", we can see that the first coefficient is \"1\", the second coefficient is \"-16\", and the last term is \"-57\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-57\" to get \"%281%29%28-57%29=-57\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-57\" (the previous product) and add to the second coefficient \"-16\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-57\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-57\":\r
\n" ); document.write( "\n" ); document.write( "1,3,19,57\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-19,-57\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-57\".\r
\n" ); document.write( "\n" ); document.write( "1*(-57) = -57
\n" ); document.write( "3*(-19) = -57
\n" ); document.write( "(-1)*(57) = -57
\n" ); document.write( "(-3)*(19) = -57\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-16\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-571+(-57)=-56
3-193+(-19)=-16
-157-1+57=56
-319-3+19=16
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"-19\" add to \"-16\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"-19\" both multiply to \"-57\" and add to \"-16\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-16x\" with \"3x-19x\". Remember, \"3\" and \"-19\" add to \"-16\". So this shows us that \"3x-19x=-16x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%283x-19x%29-57\" Replace the second term \"-16x\" with \"3x-19x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B3x%29%2B%28-19x-57%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B3%29%2B%28-19x-57%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B3%29-19%28x%2B3%29\" Factor out \"19\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-19%29%28x%2B3%29\" Combine like terms. Or factor out the common term \"x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-1%28x%5E2-16x-57%29\" then factors further to \"-%28x-19%29%28x%2B3%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-x%5E2%2B16x%2B57\" completely factors to \"-%28x-19%29%28x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"-x%5E2%2B16x%2B57=-%28x-19%29%28x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"-%28x-19%29%28x%2B3%29\" to get \"-x%5E2%2B16x%2B57\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );