document.write( "Question 319162: Factor completely. If the polynomial cannot be factored, enter PRIME.
\n" ); document.write( "Problem 7a2 + 63a - 70 \r
\n" ); document.write( "\n" ); document.write( "I can't solve this, someone help.
\n" ); document.write( "

Algebra.Com's Answer #228509 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"7a%5E2%2B63a-70\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7%28a%5E2%2B9a-10%29\" Factor out the GCF \"7\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"a%5E2%2B9a-10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"a%5E2%2B9a-10\", we can see that the first coefficient is \"1\", the second coefficient is \"9\", and the last term is \"-10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-10\" to get \"%281%29%28-10%29=-10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-10\" (the previous product) and add to the second coefficient \"9\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-10\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-10\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,10\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-10\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-10\".\r
\n" ); document.write( "\n" ); document.write( "1*(-10) = -10
\n" ); document.write( "2*(-5) = -10
\n" ); document.write( "(-1)*(10) = -10
\n" ); document.write( "(-2)*(5) = -10\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"9\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-101+(-10)=-9
2-52+(-5)=-3
-110-1+10=9
-25-2+5=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"10\" add to \"9\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"10\" both multiply to \"-10\" and add to \"9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"9a\" with \"-a%2B10a\". Remember, \"-1\" and \"10\" add to \"9\". So this shows us that \"-a%2B10a=9a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%5E2%2Bhighlight%28-a%2B10a%29-10\" Replace the second term \"9a\" with \"-a%2B10a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%5E2-a%29%2B%2810a-10%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a-1%29%2B%2810a-10%29\" Factor out the GCF \"a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a-1%29%2B10%28a-1%29\" Factor out \"10\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B10%29%28a-1%29\" Combine like terms. Or factor out the common term \"a-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"7%28a%5E2%2B9a-10%29\" then factors further to \"7%28a%2B10%29%28a-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"7a%5E2%2B63a-70\" completely factors to \"7%28a%2B10%29%28a-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"7a%5E2%2B63a-70=7%28a%2B10%29%28a-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"7%28a%2B10%29%28a-1%29\" to get \"7a%5E2%2B63a-70\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );