document.write( "Question 37163: this question is not out of the book...\r
\n" ); document.write( "\n" ); document.write( "Find what the minimum surface area for a cylindrical can will be to hold \"500+cm%5E3\". Give the radius and the height.\r
\n" ); document.write( "\n" ); document.write( "\"surface+area-+2%28pi%29r%5E2%2B2%28pi%29rh\"\r
\n" ); document.write( "\n" ); document.write( "\"volume-%28pi%29r%5E2h\"
\n" ); document.write( "

Algebra.Com's Answer #22848 by fractalier(6550)\"\" \"About 
You can put this solution on YOUR website!
Since we wish to minimize surface area, we will need to find r when dA/dr = 0.\r
\n" ); document.write( "\n" ); document.write( "(1) A = 2(pi)r^2 + 2(pi)rh\r
\n" ); document.write( "\n" ); document.write( "We can find h in terms of r by considering the volume formula\r
\n" ); document.write( "\n" ); document.write( "V = (pi)r^2h\r
\n" ); document.write( "\n" ); document.write( "500 = (pi)r^2h\r
\n" ); document.write( "\n" ); document.write( "h = 500/(pi)r^2\r
\n" ); document.write( "\n" ); document.write( "Substituting into (1) above, we get\r
\n" ); document.write( "\n" ); document.write( "A = 2(pi)r^2 + 2(pi)r(500/(pi)r^2)\r
\n" ); document.write( "\n" ); document.write( "A = 2(pi)r^2 + 1000/r\r
\n" ); document.write( "\n" ); document.write( "Now take dA/dr and set it equal to zero.\r
\n" ); document.write( "\n" ); document.write( "dA/dr = 4(pi)r - 1000/r^2 = 0\r
\n" ); document.write( "\n" ); document.write( "And r = cube root of (250/pi)\r
\n" ); document.write( "\n" ); document.write( "From there you can find h and A.
\n" ); document.write( "
\n" );