document.write( "Question 318406: A backpack manufacturer produces an internal frame pack and an external frame pack. Let X represent the number of internal frame packs produced in one hour and let Y represent the number of external frame packs produced in one hour. Then the inequalities X+3<18, 2x+y<16 , x>0 , and y>0 describe the constraints for manufacturing both packs. Use the profit function f(X)=50x+80y and the constraints given to determine the maximum profit for manufacturing both backpacks for the given constraints. \n" ); document.write( "
Algebra.Com's Answer #227951 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "As you can see the constraint, \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Check the value of the function at the three vertices: \n" ); document.write( "(0,0): \n" ); document.write( "(8,0): \n" ); document.write( "(0,16): \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "The maximum, 1280, occurs at (0,16). \n" ); document.write( " |