document.write( "Question 318015: Factor the following trinomial, if possible. If the coefficient of the first term is negative, factor out -1 to make the first term positive. \r
\n" ); document.write( "\n" ); document.write( "3c^2 + 6c - 105
\n" ); document.write( "

Algebra.Com's Answer #227703 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"3c%5E2%2B6c-105\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3%28c%5E2%2B2c-35%29\" Factor out the GCF \"3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"c%5E2%2B2c-35\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"c%5E2%2B2c-35\", we can see that the first coefficient is \"1\", the second coefficient is \"2\", and the last term is \"-35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-35\" to get \"%281%29%28-35%29=-35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-35\" (the previous product) and add to the second coefficient \"2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-35\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-35\":\r
\n" ); document.write( "\n" ); document.write( "1,5,7,35\r
\n" ); document.write( "\n" ); document.write( "-1,-5,-7,-35\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-35\".\r
\n" ); document.write( "\n" ); document.write( "1*(-35) = -35
\n" ); document.write( "5*(-7) = -35
\n" ); document.write( "(-1)*(35) = -35
\n" ); document.write( "(-5)*(7) = -35\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-351+(-35)=-34
5-75+(-7)=-2
-135-1+35=34
-57-5+7=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"7\" add to \"2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"7\" both multiply to \"-35\" and add to \"2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"2c\" with \"-5c%2B7c\". Remember, \"-5\" and \"7\" add to \"2\". So this shows us that \"-5c%2B7c=2c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"c%5E2%2Bhighlight%28-5c%2B7c%29-35\" Replace the second term \"2c\" with \"-5c%2B7c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28c%5E2-5c%29%2B%287c-35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"c%28c-5%29%2B%287c-35%29\" Factor out the GCF \"c\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"c%28c-5%29%2B7%28c-5%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28c%2B7%29%28c-5%29\" Combine like terms. Or factor out the common term \"c-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3%28c%5E2%2B2c-35%29\" then factors further to \"3%28c%2B7%29%28c-5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3c%5E2%2B6c-105\" completely factors to \"3%28c%2B7%29%28c-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3c%5E2%2B6c-105=3%28c%2B7%29%28c-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"3%28c%2B7%29%28c-5%29\" to get \"3c%5E2%2B6c-105\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );