document.write( "Question 317097: I am having trouble figuring out how to factor the three problems listed below:1. x^2+2x-2x-4;2.v^2+9v+14;3. r^2-2r-48. I have been working on them for about 1 1/2 hours at this time and just can not seem to get any where can you help? \n" ); document.write( "
Algebra.Com's Answer #227020 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
# 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2B2x-2x-4\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B2x%29%2B%28-2x-4%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B2%29-2%28x%2B2%29\" Factor out the GCF \"x\" out of the first group. Factor out the GCF \"-2\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-2%29%28x%2B2%29\" Since we have the common term \"x%2B2\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2B2x-2x-4\" factors to \"%28x-2%29%28x%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E2%2B2x-2x-4=%28x-2%29%28x%2B2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------------
\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"v%5E2%2B9v%2B14\", we can see that the first coefficient is \"1\", the second coefficient is \"9\", and the last term is \"14\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"14\" to get \"%281%29%2814%29=14\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"14\" (the previous product) and add to the second coefficient \"9\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"14\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"14\":\r
\n" ); document.write( "\n" ); document.write( "1,2,7,14\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-7,-14\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"14\".\r
\n" ); document.write( "\n" ); document.write( "1*14 = 14
\n" ); document.write( "2*7 = 14
\n" ); document.write( "(-1)*(-14) = 14
\n" ); document.write( "(-2)*(-7) = 14\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"9\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1141+14=15
272+7=9
-1-14-1+(-14)=-15
-2-7-2+(-7)=-9
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"7\" add to \"9\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"7\" both multiply to \"14\" and add to \"9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"9v\" with \"2v%2B7v\". Remember, \"2\" and \"7\" add to \"9\". So this shows us that \"2v%2B7v=9v\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v%5E2%2Bhighlight%282v%2B7v%29%2B14\" Replace the second term \"9v\" with \"2v%2B7v\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28v%5E2%2B2v%29%2B%287v%2B14%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v%28v%2B2%29%2B%287v%2B14%29\" Factor out the GCF \"v\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v%28v%2B2%29%2B7%28v%2B2%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28v%2B7%29%28v%2B2%29\" Combine like terms. Or factor out the common term \"v%2B2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"v%5E2%2B9v%2B14\" factors to \"%28v%2B7%29%28v%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"v%5E2%2B9v%2B14=%28v%2B7%29%28v%2B2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28v%2B7%29%28v%2B2%29\" to get \"v%5E2%2B9v%2B14\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------------
\n" ); document.write( "# 3\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"r%5E2-2r-48\", we can see that the first coefficient is \"1\", the second coefficient is \"-2\", and the last term is \"-48\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-48\" to get \"%281%29%28-48%29=-48\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-48\" (the previous product) and add to the second coefficient \"-2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-48\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-48\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,16,24,48\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-16,-24,-48\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-48\".\r
\n" ); document.write( "\n" ); document.write( "1*(-48) = -48
\n" ); document.write( "2*(-24) = -48
\n" ); document.write( "3*(-16) = -48
\n" ); document.write( "4*(-12) = -48
\n" ); document.write( "6*(-8) = -48
\n" ); document.write( "(-1)*(48) = -48
\n" ); document.write( "(-2)*(24) = -48
\n" ); document.write( "(-3)*(16) = -48
\n" ); document.write( "(-4)*(12) = -48
\n" ); document.write( "(-6)*(8) = -48\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-481+(-48)=-47
2-242+(-24)=-22
3-163+(-16)=-13
4-124+(-12)=-8
6-86+(-8)=-2
-148-1+48=47
-224-2+24=22
-316-3+16=13
-412-4+12=8
-68-6+8=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"6\" and \"-8\" add to \"-2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"6\" and \"-8\" both multiply to \"-48\" and add to \"-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-2r\" with \"6r-8r\". Remember, \"6\" and \"-8\" add to \"-2\". So this shows us that \"6r-8r=-2r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2%2Bhighlight%286r-8r%29-48\" Replace the second term \"-2r\" with \"6r-8r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%5E2%2B6r%29%2B%28-8r-48%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r%2B6%29%2B%28-8r-48%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r%2B6%29-8%28r%2B6%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r-8%29%28r%2B6%29\" Combine like terms. Or factor out the common term \"r%2B6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"r%5E2-2r-48\" factors to \"%28r-8%29%28r%2B6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"r%5E2-2r-48=%28r-8%29%28r%2B6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r-8%29%28r%2B6%29\" to get \"r%5E2-2r-48\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );