document.write( "Question 317057: Factor the following trinomial, if possible. If the coefficient of the first term is negative, factor out -1 to make the first term positive.
\n" ); document.write( "8b^2 + 10b - 25
\n" ); document.write( "

Algebra.Com's Answer #226993 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"8b%5E2%2B10b-25\", we can see that the first coefficient is \"8\", the second coefficient is \"10\", and the last term is \"-25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"8\" by the last term \"-25\" to get \"%288%29%28-25%29=-200\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-200\" (the previous product) and add to the second coefficient \"10\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-200\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-200\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,20,25,40,50,100,200\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-20,-25,-40,-50,-100,-200\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-200\".\r
\n" ); document.write( "\n" ); document.write( "1*(-200) = -200
\n" ); document.write( "2*(-100) = -200
\n" ); document.write( "4*(-50) = -200
\n" ); document.write( "5*(-40) = -200
\n" ); document.write( "8*(-25) = -200
\n" ); document.write( "10*(-20) = -200
\n" ); document.write( "(-1)*(200) = -200
\n" ); document.write( "(-2)*(100) = -200
\n" ); document.write( "(-4)*(50) = -200
\n" ); document.write( "(-5)*(40) = -200
\n" ); document.write( "(-8)*(25) = -200
\n" ); document.write( "(-10)*(20) = -200\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"10\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2001+(-200)=-199
2-1002+(-100)=-98
4-504+(-50)=-46
5-405+(-40)=-35
8-258+(-25)=-17
10-2010+(-20)=-10
-1200-1+200=199
-2100-2+100=98
-450-4+50=46
-540-5+40=35
-825-8+25=17
-1020-10+20=10
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-10\" and \"20\" add to \"10\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-10\" and \"20\" both multiply to \"-200\" and add to \"10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"10b\" with \"-10b%2B20b\". Remember, \"-10\" and \"20\" add to \"10\". So this shows us that \"-10b%2B20b=10b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"8b%5E2%2Bhighlight%28-10b%2B20b%29-25\" Replace the second term \"10b\" with \"-10b%2B20b\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%288b%5E2-10b%29%2B%2820b-25%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%284b-5%29%2B%2820b-25%29\" Factor out the GCF \"2b\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2b%284b-5%29%2B5%284b-5%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282b%2B5%29%284b-5%29\" Combine like terms. Or factor out the common term \"4b-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"8b%5E2%2B10b-25\" factors to \"%282b%2B5%29%284b-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"8b%5E2%2B10b-25=%282b%2B5%29%284b-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282b%2B5%29%284b-5%29\" to get \"8b%5E2%2B10b-25\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );