document.write( "Question 316992: Factor:
\n" ); document.write( "3x^2+2xy-16y^2
\n" ); document.write( "

Algebra.Com's Answer #226918 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at \"3x%5E2%2B2xy-16y%5E2\" we can see that the first term is \"3x%5E2\" and the last term is \"-16y%5E2\" where the coefficients are 3 and -16 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 3 and the last coefficient -16 to get -48. Now what two numbers multiply to -48 and add to the middle coefficient 2? Let's list all of the factors of -48:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of -48:\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,16,24,48\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-16,-24,-48 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to -48\r
\n" ); document.write( "\n" ); document.write( "(1)*(-48)\r
\n" ); document.write( "\n" ); document.write( "(2)*(-24)\r
\n" ); document.write( "\n" ); document.write( "(3)*(-16)\r
\n" ); document.write( "\n" ); document.write( "(4)*(-12)\r
\n" ); document.write( "\n" ); document.write( "(6)*(-8)\r
\n" ); document.write( "\n" ); document.write( "(-1)*(48)\r
\n" ); document.write( "\n" ); document.write( "(-2)*(24)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(16)\r
\n" ); document.write( "\n" ); document.write( "(-4)*(12)\r
\n" ); document.write( "\n" ); document.write( "(-6)*(8)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember, the product of a negative and a positive number is a negative number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to 2? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-481+(-48)=-47
2-242+(-24)=-22
3-163+(-16)=-13
4-124+(-12)=-8
6-86+(-8)=-2
-148-1+48=47
-224-2+24=22
-316-3+16=13
-412-4+12=8
-68-6+8=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -6 and 8 add up to 2 and multiply to -48\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"3x%5E2%2B2xy-16y%5E2\", replace \"2xy\" with \"-6xy%2B8xy\" (notice \"-6xy%2B8xy\" adds up to \"2xy\". So it is equivalent to \"2xy\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2Bhighlight%28-6xy%2B8xy%29%2B-16y%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"3x%5E2-6xy%2B8xy-16y%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%5E2-6xy%29%2B%288xy-16y%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%28x-2y%29%2B8y%28x-2y%29\" Factor out the GCF of \"3x\" out of the first group. Factor out the GCF of \"8y\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2B8y%29%28x-2y%29\" Since we have a common term of \"x-2y\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3x%5E2-6xy%2B8xy-16y%5E2\" factors to \"%283x%2B8y%29%28x-2y%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"3x%5E2%2B2xy-16y%5E2\" factors to \"%283x%2B8y%29%28x-2y%29\" (since \"3x%5E2%2B2xy-16y%5E2\" is equivalent to \"3x%5E2-6xy%2B8xy-16y%5E2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Answer:\r
\n" ); document.write( "\n" ); document.write( "So \"3x%5E2%2B2xy-16y%5E2\" factors to \"%283x%2B8y%29%28x-2y%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3x%5E2%2B2xy-16y%5E2=%283x%2B8y%29%28x-2y%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );