document.write( "Question 316805: h= -16t2 +80t + 50
\n" );
document.write( "Use this position polynomial to calculate the following: \r
\n" );
document.write( "\n" );
document.write( "1.The height of the object after 2 seconds
\n" );
document.write( "2.The height of the object after 5 seconds
\n" );
document.write( "3.The maximum height of the object
\n" );
document.write( "4.How long the the object will take to reach the ground? \n" );
document.write( "
Algebra.Com's Answer #226797 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! h= -16t2 +80t + 50 \n" ); document.write( "Use this position polynomial to calculate the following: \n" ); document.write( "1.The height of the object after 2 seconds \n" ); document.write( "h= -16(2)^2 +80(2) + 50 \n" ); document.write( "h= -16(4) +160 + 50 \n" ); document.write( "h= -64 +160 + 50 \n" ); document.write( "h = 146 \n" ); document.write( "2.The height of the object after 5 seconds \n" ); document.write( "h= -16(5)^2 +80(5) + 50 \n" ); document.write( "h= -16(25) +400 + 50 \n" ); document.write( "h= 50 \n" ); document.write( "3.The maximum height of the object \n" ); document.write( "axis of symmetry: \n" ); document.write( "t = -b/(2a) = -80/(-32) = 2.5 \n" ); document.write( "h= -16(2.5)^2 +80(2.5) + 50 \n" ); document.write( "h = 150 \n" ); document.write( "4.How long the the object will take to reach the ground? \n" ); document.write( "set h to zero solve for t \n" ); document.write( "0= -16t2 +80t + 50 \n" ); document.write( "Apply the quadratic formula to get: \n" ); document.write( "t = {-0.562, 5.562} \n" ); document.write( "Toss out the negative solution leaving: \n" ); document.write( "t = 5.562 \n" ); document.write( "Details of quadratic to follow: \n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |