document.write( "Question 316091: The instruments of an airplane show a speed of 165 mph on a heading of 210degrees. However, the computer shows a ground speed of 178 mph on a heading of 212degrees. Find the speed and direction of the wind.\r
\n" ); document.write( "\n" ); document.write( "Thanks you so much for helping me.
\n" ); document.write( "

Algebra.Com's Answer #226117 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
resolving the airspeed and ground speed into their x and y components will allow you to find the wind speed components\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "remember to convert the compass heading to degrees on the unit circle\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Ax = 165 * cos(240º) = -82.5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Ay = 165 * sin(240º) = -142.89 (approx)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Gx = 178 * cos(238º) = -94.33 (approx)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Gy = 178 * sin(238º) = -150.95 (approx)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Wx = Gx - Ax = -11.83\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Wy = Gy - Ay = -8.06\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = sqrt(Wx^2 + Wy^2) = 14.31 (approx)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Θ = tan^-1(Wy / Wx) = 214.27º (approx)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the heading of the wind is 235.73º (approx)
\n" ); document.write( "
\n" );