document.write( "Question 315391: Please help me factor this expression 36x^4-8x^3-28x^2 \n" ); document.write( "
Algebra.Com's Answer #225669 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"36x%5E4-8x%5E3-28x%5E2\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2%289x%5E2-2x-7%29\" Factor out the GCF \"4x%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"9x%5E2-2x-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2-2x-7\", we can see that the first coefficient is \"9\", the second coefficient is \"-2\", and the last term is \"-7\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"-7\" to get \"%289%29%28-7%29=-63\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-63\" (the previous product) and add to the second coefficient \"-2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-63\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-63\":\r
\n" ); document.write( "\n" ); document.write( "1,3,7,9,21,63\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-7,-9,-21,-63\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-63\".\r
\n" ); document.write( "\n" ); document.write( "1*(-63) = -63
\n" ); document.write( "3*(-21) = -63
\n" ); document.write( "7*(-9) = -63
\n" ); document.write( "(-1)*(63) = -63
\n" ); document.write( "(-3)*(21) = -63
\n" ); document.write( "(-7)*(9) = -63\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-631+(-63)=-62
3-213+(-21)=-18
7-97+(-9)=-2
-163-1+63=62
-321-3+21=18
-79-7+9=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"7\" and \"-9\" add to \"-2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"7\" and \"-9\" both multiply to \"-63\" and add to \"-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-2x\" with \"7x-9x\". Remember, \"7\" and \"-9\" add to \"-2\". So this shows us that \"7x-9x=-2x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%287x-9x%29-7\" Replace the second term \"-2x\" with \"7x-9x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2%2B7x%29%2B%28-9x-7%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%289x%2B7%29%2B%28-9x-7%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%289x%2B7%29-1%289x%2B7%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-1%29%289x%2B7%29\" Combine like terms. Or factor out the common term \"9x%2B7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2%289x%5E2-2x-7%29\" then factors further to \"4x%5E2%28x-1%29%289x%2B7%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"36x%5E4-8x%5E3-28x%5E2\" completely factors to \"4x%5E2%28x-1%29%289x%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"36x%5E4-8x%5E3-28x%5E2=4x%5E2%28x-1%29%289x%2B7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"4x%5E2%28x-1%29%289x%2B7%29\" to get \"36x%5E4-8x%5E3-28x%5E2\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );