document.write( "Question 313706: The diagonal of a rectangle is 25 cm and the length iss 10 cm more than twice the width. What is the perimeter of the rectangle? \n" ); document.write( "
Algebra.Com's Answer #224318 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
let the width be x
\n" ); document.write( "the length is 2x+10
\n" ); document.write( "Diagonal = 25
\n" ); document.write( "..
\n" ); document.write( "they form a right triangle with diagonal as hypotenuse.
\n" ); document.write( "x^2+(2x+10)^2=25^2
\n" ); document.write( "x^2 + 4x^2+40x+100=625
\n" ); document.write( "5x^2+40x-525=0
\n" ); document.write( "x^2+8x-105=0
\n" ); document.write( "x^2+15x-7x-105=0
\n" ); document.write( "x(x+15)-7(x+15)=0
\n" ); document.write( "(x+15)(x-7)=0
\n" ); document.write( "x=7 cm the width
\n" ); document.write( "length = 2x+10
\n" ); document.write( "=2*7+10
\n" ); document.write( "=24 cm
\n" ); document.write( "
\n" );