document.write( "Question 313447: When the digits of a two-digit number are reversed, the new number is 9 more than the original number, and the sum of the digits of the original number is 13. What is the original number? \n" ); document.write( "
Algebra.Com's Answer #224096 by OmniMaestra(21)\"\" \"About 
You can put this solution on YOUR website!
When the digits of a two-digit number are reversed, the new number is 9 more than the original number, and the sum of the digits of the original number is 13. What is the original number?\r
\n" ); document.write( "\n" ); document.write( "The firs digit in each number will be multiplied by 10 because it is in the tens place.\r
\n" ); document.write( "\n" ); document.write( "The second number, 10y+x is 9 more than the first number, 10x+y.
\n" ); document.write( "So----------------->10y+x=9+10x+y
\n" ); document.write( "Put it in Standard form-->-9x+9y=9----> simplify, divide by 9
\n" ); document.write( "--------------------------> -x+y=1
\n" ); document.write( "Second equation--------_--> x+y=13 now add down
\n" ); document.write( "--------------------------> 2y=14
\n" ); document.write( "---------------------------> y=7\r
\n" ); document.write( "\n" ); document.write( "Now substitue the 7 into an original equation
\n" ); document.write( "10(7)+x=9+10x+7
\n" ); document.write( "70+x=16+10x
\n" ); document.write( "54=9x
\n" ); document.write( "6=x\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );