document.write( "Question 307267: In mathematics, n! means the product of the numbers from 1 to n.
\n" );
document.write( "For example, 3! = 1 × 2 × 3. Determine the one’s digit of the sum\r
\n" );
document.write( "\n" );
document.write( "1! + 2! + 3! + · · · + 18! + 19! + 20!\r
\n" );
document.write( "\n" );
document.write( "a 0 b 3 c 5 d 7 e 9 \n" );
document.write( "
Algebra.Com's Answer #219844 by Theo(13342)![]() ![]() You can put this solution on YOUR website! 1! = 1 \n" ); document.write( "2! = 1! * 2 = 1 * 2 = 2 \n" ); document.write( "3! = 2! * 3 = 2 * 3 = 6 \n" ); document.write( "4! = 3! * 4 = 6 * 4 = 24 \n" ); document.write( "5! = 4! * 5 = 24 * 5 = 720 \n" ); document.write( "6! = 5! * 6 = 720 * 6 = 4320 \n" ); document.write( "7! = 6! * 7 = 4320 * 7 = 30240\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Once the units digit becomes 0, it will remain 0 forever because any number times 0 will always equal 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The units digit of the sum will remain what it is after you reach 4!.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The units digit of the sum of the factorials is 3 and will remain 3 forever.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "That would be selection B.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |