document.write( "Question 304917: Mathematicians have been searching for a formula that yields prime numbers. One such formula was x2-x+41. Select some numbers for x, substitute them in the formula, and see if prime numbers occur. Try to find a number for x that when substituted in the formula yields a composite number. What number will solve for x? \n" ); document.write( "
Algebra.Com's Answer #218385 by themathtutor2009(81)![]() ![]() ![]() You can put this solution on YOUR website! x=1: 1^2-1+41=41....prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=5: 5^2-5+41=61....prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=10: 10^2-10+41=131... prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=20: 20^2-20+41=421...prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=40: 40^2-40+41=1601...prime\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=41: 41^2-41+41=1681...composite\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=42: 42^2-42+41=1763...composite\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x=45: 45^2-45+41=2021...composite\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Any non-negative number less than 41 yields a prime number \n" ); document.write( " |