document.write( "Question 304826: A rectangular field is to enclosed with 600 m of fencing. What dimensions will produce a maximum area? \n" ); document.write( "
Algebra.Com's Answer #218296 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! A rectangular field is to enclosed with 600 m of fencing. What dimensions will produce a maximum area? \n" ); document.write( " \r\n" ); document.write( "Area = length * width\r\n" ); document.write( "\r\n" ); document.write( "Let y = the area\r\n" ); document.write( "Let x = the width\r\n" ); document.write( "Let L = the length\r\n" ); document.write( "\r\n" ); document.write( " y = x * L\r\n" ); document.write( "\r\n" ); document.write( "Now since the perimeter is 600\r\n" ); document.write( "\r\n" ); document.write( " P = 2*length + 2*width\r\n" ); document.write( "\r\n" ); document.write( " 600 = 2L + 2x\r\n" ); document.write( "\r\n" ); document.write( "Divide through by 2\r\n" ); document.write( "\r\n" ); document.write( " 300 = L + x\r\n" ); document.write( "\r\n" ); document.write( "Solve for L by subtracting x from both sides:\r\n" ); document.write( "\r\n" ); document.write( "300 - x = L\r\n" ); document.write( "\r\n" ); document.write( "Substituting 300-x for L in\r\n" ); document.write( "\r\n" ); document.write( " y = x * L\r\n" ); document.write( "\r\n" ); document.write( " y = x * (300 - x)\r\n" ); document.write( "\r\n" ); document.write( " y = 300x - x2\r\n" ); document.write( "\r\n" ); document.write( "Write in descending order of exponents\r\n" ); document.write( "\r\n" ); document.write( " y = -x2 + 300x \r\n" ); document.write( "\r\n" ); document.write( "Since the coefficient of\n" ); document.write( " |