document.write( "Question 4611: Is 2^n3^2n-1 always divisible by 17? \n" ); document.write( "
Algebra.Com's Answer #2176 by khwang(438)\"\" \"About 
You can put this solution on YOUR website!
Yes, proof as below.\r
\n" ); document.write( "\n" ); document.write( " 2^n3^2n -1 = (2*3^2)^n - 1 = (18^n) - 1\r
\n" ); document.write( "\n" ); document.write( " Use a^n-b^n = (a-b)(a^(n-1) + a^(n-2)b+...+ ab^(n-2)+ b^(n-1))
\n" ); document.write( " Now a= 18, b = 1,
\n" ); document.write( " we have (18^n) - 1 = (18-1)(18^17+18^16+...+18+1)
\n" ); document.write( " = 17*(18^17+18^16+...+18+1)\r
\n" ); document.write( "\n" ); document.write( " This shows 17 is a divisor of 2^n3^2n -1
\n" ); document.write( " Or proved by Mathematical Induction.\r
\n" ); document.write( "\n" ); document.write( " Kenny
\n" ); document.write( "
\n" );