document.write( "Question 303580: Factor:
\n" ); document.write( "42-13r+r^2
\n" ); document.write( "I don't even know where to begin with this problem!
\n" ); document.write( "I am also lost when it comes to finding the variation constant and an equation of variation where y varies directly as x and y=4 when x=1. I know that y=kx, but everytime I do the math I come out with y=4x...am I on the right track?? Thank you so much for your time!!
\n" ); document.write( "

Algebra.Com's Answer #217552 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
# 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"42-13r%2Br%5E2\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2-13r%2B42\" Rearrange the terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"r%5E2-13r%2B42\", we can see that the first coefficient is \"1\", the second coefficient is \"-13\", and the last term is \"42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"42\" to get \"%281%29%2842%29=42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"42\" (the previous product) and add to the second coefficient \"-13\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"42\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"42\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"42\".\r
\n" ); document.write( "\n" ); document.write( "1*42 = 42
\n" ); document.write( "2*21 = 42
\n" ); document.write( "3*14 = 42
\n" ); document.write( "6*7 = 42
\n" ); document.write( "(-1)*(-42) = 42
\n" ); document.write( "(-2)*(-21) = 42
\n" ); document.write( "(-3)*(-14) = 42
\n" ); document.write( "(-6)*(-7) = 42\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-13\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1421+42=43
2212+21=23
3143+14=17
676+7=13
-1-42-1+(-42)=-43
-2-21-2+(-21)=-23
-3-14-3+(-14)=-17
-6-7-6+(-7)=-13
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-6\" and \"-7\" add to \"-13\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-6\" and \"-7\" both multiply to \"42\" and add to \"-13\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-13r\" with \"-6r-7r\". Remember, \"-6\" and \"-7\" add to \"-13\". So this shows us that \"-6r-7r=-13r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2%2Bhighlight%28-6r-7r%29%2B42\" Replace the second term \"-13r\" with \"-6r-7r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%5E2-6r%29%2B%28-7r%2B42%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-6%29%2B%28-7r%2B42%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-6%29-7%28r-6%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r-7%29%28r-6%29\" Combine like terms. Or factor out the common term \"r-6\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"42-13r%2Br%5E2\" factors to \"%28r-7%29%28r-6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"42-13r%2Br%5E2=%28r-7%29%28r-6%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r-7%29%28r-6%29\" to get \"42-13r%2Br%5E2\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=======================================\r
\n" ); document.write( "\n" ); document.write( "# 2 You have the correct equation \"y=4x\". Notice how when x=1, \"y=4%281%29=4\" or simply \"y=4\"
\n" ); document.write( "
\n" ); document.write( "
\n" );