\r\n" );
document.write( "To find the zeros, we set the rational function equal to 0:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the graph crosses the x-axis at 0 and 3:\r\n" );
document.write( "\r\n" );
document.write( "To find the vertical asymptote(s), we set the denominator\r\n" );
document.write( "equal to zero:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "That is the equation of a vertical line through 4 on the x-axis:\r\n" );
document.write( "\r\n" );
document.write( "Since the degree of the numerator
is 2 and the degree\r\n" );
document.write( "of the denominator is 1, the numerator has a greater degree so this\r\n" );
document.write( "rational function cannot have a horizontal asymptote. However since\r\n" );
document.write( "the degree of the numerator is exactly 1 degree greater than the \r\n" );
document.write( "denominator, there is a slanted or oblique asymptote which we find \r\n" );
document.write( "by long division:\r\n" );
document.write( "\r\n" );
document.write( " x - 7 \r\n" );
document.write( "x + 4)x² - 3x + 0\r\n" );
document.write( " x² + 4x\r\n" );
document.write( " -7x + 0\r\n" );
document.write( " -7x - 28\r\n" );
document.write( " 28\r\n" );
document.write( "\r\n" );
document.write( "We ignore the remainder and the slanted or oblique asymptote\r\n" );
document.write( "is the line whose equation is
. Drawing in the\r\n" );
document.write( "two asymptotes in green and the graph in red, we have:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Edwin
\n" );
document.write( "