document.write( "Question 299905: Four squares, each with sides 4 cm long, are cut from the corners of a rectangular piece of cardboard having an area 560 cm^2. The flaps are then bent up to form an open topped box having volume 960 cm^3. Find the dimensions of the original piece of cardboard.
\n" ); document.write( "Thank you!
\n" ); document.write( "

Algebra.Com's Answer #215389 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
xy=560 or x=560/y
\n" ); document.write( "(x-8)(y-8)*4=960
\n" ); document.write( "(560/y-8)(y-8)*4=960 divide both sides by 4.
\n" ); document.write( "(560-8y-4480/y+64)=240
\n" ); document.write( "(-8y-4480/y)=240-64-560
\n" ); document.write( "-8y-4480/y=-384
\n" ); document.write( "(-8y*y-4480)/y=-384 cross multiply.
\n" ); document.write( "-8y^2-4480=-384y
\n" ); document.write( "-8y^2+384y=4480
\n" ); document.write( "8y^2-384y+4480=0
\n" ); document.write( "8(y^2-48y+560)=0
\n" ); document.write( "8(y-28)(y-20)=0
\n" ); document.write( "y-28=0
\n" ); document.write( "y=28 x=560/28=20 ans.
\n" ); document.write( "y-20=0
\n" ); document.write( "y=20 x=560/20=28 ans.
\n" ); document.write( "Proof:
\n" ); document.write( "(28-8)(20-8)*4=960
\n" ); document.write( "20*12*4=960
\n" ); document.write( "960=960
\n" ); document.write( "
\n" ); document.write( "
\n" );