document.write( "Question 299541: Factor by grouping. Please help!Thank you(:
\n" ); document.write( "18n^2+57n-10!thanks again!
\n" ); document.write( "

Algebra.Com's Answer #215193 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"18n%5E2%2B57n-10\", we can see that the first coefficient is \"18\", the second coefficient is \"57\", and the last term is \"-10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"18\" by the last term \"-10\" to get \"%2818%29%28-10%29=-180\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-180\" (the previous product) and add to the second coefficient \"57\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-180\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-180\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-180\".\r
\n" ); document.write( "\n" ); document.write( "1*(-180) = -180
\n" ); document.write( "2*(-90) = -180
\n" ); document.write( "3*(-60) = -180
\n" ); document.write( "4*(-45) = -180
\n" ); document.write( "5*(-36) = -180
\n" ); document.write( "6*(-30) = -180
\n" ); document.write( "9*(-20) = -180
\n" ); document.write( "10*(-18) = -180
\n" ); document.write( "12*(-15) = -180
\n" ); document.write( "(-1)*(180) = -180
\n" ); document.write( "(-2)*(90) = -180
\n" ); document.write( "(-3)*(60) = -180
\n" ); document.write( "(-4)*(45) = -180
\n" ); document.write( "(-5)*(36) = -180
\n" ); document.write( "(-6)*(30) = -180
\n" ); document.write( "(-9)*(20) = -180
\n" ); document.write( "(-10)*(18) = -180
\n" ); document.write( "(-12)*(15) = -180\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"57\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1801+(-180)=-179
2-902+(-90)=-88
3-603+(-60)=-57
4-454+(-45)=-41
5-365+(-36)=-31
6-306+(-30)=-24
9-209+(-20)=-11
10-1810+(-18)=-8
12-1512+(-15)=-3
-1180-1+180=179
-290-2+90=88
-360-3+60=57
-445-4+45=41
-536-5+36=31
-630-6+30=24
-920-9+20=11
-1018-10+18=8
-1215-12+15=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-3\" and \"60\" add to \"57\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-3\" and \"60\" both multiply to \"-180\" and add to \"57\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"57n\" with \"-3n%2B60n\". Remember, \"-3\" and \"60\" add to \"57\". So this shows us that \"-3n%2B60n=57n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"18n%5E2%2Bhighlight%28-3n%2B60n%29-10\" Replace the second term \"57n\" with \"-3n%2B60n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2818n%5E2-3n%29%2B%2860n-10%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3n%286n-1%29%2B%2860n-10%29\" Factor out the GCF \"3n\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3n%286n-1%29%2B10%286n-1%29\" Factor out \"10\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283n%2B10%29%286n-1%29\" Combine like terms. Or factor out the common term \"6n-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"18n%5E2%2B57n-10\" factors to \"%283n%2B10%29%286n-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"18n%5E2%2B57n-10=%283n%2B10%29%286n-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283n%2B10%29%286n-1%29\" to get \"18n%5E2%2B57n-10\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );