document.write( "Question 299484: reverse foil or trial factoring\r
\n" ); document.write( "\n" ); document.write( "9x^2-25
\n" ); document.write( "

Algebra.Com's Answer #215168 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Note: \"9x%5E2-25\" can be written as \"9x%5E2%2B0x-25\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2%2B0x-25\", we can see that the first coefficient is \"9\", the second coefficient is \"0\", and the last term is \"-25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"-25\" to get \"%289%29%28-25%29=-225\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-225\" (the previous product) and add to the second coefficient \"0\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-225\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-225\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,9,15,25,45,75,225\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-9,-15,-25,-45,-75,-225\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-225\".\r
\n" ); document.write( "\n" ); document.write( "1*(-225) = -225
\n" ); document.write( "3*(-75) = -225
\n" ); document.write( "5*(-45) = -225
\n" ); document.write( "9*(-25) = -225
\n" ); document.write( "15*(-15) = -225
\n" ); document.write( "(-1)*(225) = -225
\n" ); document.write( "(-3)*(75) = -225
\n" ); document.write( "(-5)*(45) = -225
\n" ); document.write( "(-9)*(25) = -225
\n" ); document.write( "(-15)*(15) = -225\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"0\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-2251+(-225)=-224
3-753+(-75)=-72
5-455+(-45)=-40
9-259+(-25)=-16
15-1515+(-15)=0
-1225-1+225=224
-375-3+75=72
-545-5+45=40
-925-9+25=16
-1515-15+15=0
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-15\" and \"15\" add to \"0\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-15\" and \"15\" both multiply to \"-225\" and add to \"0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"0x\" with \"-15x%2B15x\". Remember, \"-15\" and \"15\" add to \"0\". So this shows us that \"-15x%2B15x=0x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%28-15x%2B15x%29-25\" Replace the second term \"0x\" with \"-15x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2-15x%29%2B%2815x-25%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%283x-5%29%2B%2815x-25%29\" Factor out the GCF \"3x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%283x-5%29%2B5%283x-5%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2B5%29%283x-5%29\" Combine like terms. Or factor out the common term \"3x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2%2B0x-25\" factors to \"%283x%2B5%29%283x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9x%5E2%2B0x-25=%283x%2B5%29%283x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2-25=%283x%2B5%29%283x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283x%2B5%29%283x-5%29\" to get \"9x%5E2%2B0x-25\" or by graphing the original expression and the answer (the two graphs should be identical). Also, \"9x%5E2-25\" is a difference of squares.
\n" ); document.write( "
\n" ); document.write( "
\n" );