document.write( "Question 293406: from a thin piece of cardboard 40in. by 40in., square corners are cut out so that the sides can be foled to make a box. what dimensions will yield a bos of maximum volume? what is the maximum volume? \n" ); document.write( "
Algebra.Com's Answer #211819 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! from a thin piece of cardboard 40in. by 40in., square corners are cut out so that the sides can be folded to make a box. \n" ); document.write( "what dimensions will yield a box of maximum volume? \n" ); document.write( "what is the maximum volume? \n" ); document.write( "--- \n" ); document.write( "Volume = height*length*width \n" ); document.write( "---- \n" ); document.write( "V = x(40-2x)(40-2x) \n" ); document.write( "V = 4x(20-x)(20-x) \n" ); document.write( "V = 4x[400-40x+x^2) \n" ); document.write( "V = 4x^3 - 160x^2 + 1600x \n" ); document.write( "---------------------- \n" ); document.write( "Take the derivative: \n" ); document.write( "V' = 12x^2 - 320x + 1600 \n" ); document.write( "--- \n" ); document.write( "Solve 4(3x^2-80x+400) = 0 \n" ); document.write( "4(3x-20)(x-20) = 0 \n" ); document.write( "Realistic value for \"x\": \n" ); document.write( "3x = 20 \n" ); document.write( "x = 20/3 = 6 2/3 \n" ); document.write( "========================= \n" ); document.write( "Volume when x = 20/3 inches \n" ); document.write( "V(20/3) = 4740.7 cu. inches \n" ); document.write( "=============================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "===============================\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |