document.write( "Question 293092: I need help solving the system 5X - 2Y = 14
\n" ); document.write( " 4X + 7Y = -6
\n" ); document.write( "

Algebra.Com's Answer #211573 by Deina(147)\"\" \"About 
You can put this solution on YOUR website!
Thanks to Jim Thompson for writing this wonderful solver for this situation!
\r
\n" ); document.write( "\n" ); document.write( "I will admit that, at first glance it looks a bit scary, but if you go point by point through it, making sure that you understand what he's doing, it's easy like cake!

\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: Using Cramer's Rule to Solve Systems with 2 variables

\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"system%285%2Ax%2B-2%2Ay=14%2C4%2Ax%2B7%2Ay=-6%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " First let \"A=%28matrix%282%2C2%2C5%2C-2%2C4%2C7%29%29\". This is the matrix formed by the coefficients of the given system of equations.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Take note that the right hand values of the system are \"14\" and \"-6\" which are highlighted here:
\n" ); document.write( " \"system%285%2Ax%2B-2%2Ay=highlight%2814%29%2C4%2Ax%2B7%2Ay=highlight%28-6%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " These values are important as they will be used to replace the columns of the matrix A.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now let's calculate the the determinant of the matrix A to get \"abs%28A%29=%285%29%287%29-%28-2%29%284%29=43\". Remember that the determinant of the 2x2 matrix \"A=%28matrix%282%2C2%2Ca%2Cb%2Cc%2Cd%29%29\" is \"abs%28A%29=ad-bc\". If you need help with calculating the determinant of any two by two matrices, then check out this solver.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notation note: \"abs%28A%29\" denotes the determinant of the matrix A.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ---------------------------------------------------------
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now replace the first column of A (that corresponds to the variable 'x') with the values that form the right hand side of the system of equations. We will denote this new matrix \"A%5Bx%5D\" (since we're replacing the 'x' column so to speak).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"A%5Bx%5D=%28matrix%282%2C2%2Chighlight%2814%29%2C-2%2Chighlight%28-6%29%2C7%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now compute the determinant of \"A%5Bx%5D\" to get \"abs%28A%5Bx%5D%29=%2814%29%287%29-%28-2%29%28-6%29=86\". Once again, remember that the determinant of the 2x2 matrix \"A=%28matrix%282%2C2%2Ca%2Cb%2Cc%2Cd%29%29\" is \"abs%28A%29=ad-bc\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " To find the first solution, simply divide the determinant of \"A%5Bx%5D\" by the determinant of \"A\" to get: \"x=%28abs%28A%5Bx%5D%29%29%2F%28abs%28A%29%29=%2886%29%2F%2843%29=2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the first solution is \"x=2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ---------------------------------------------------------
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " We'll follow the same basic idea to find the other solution. Let's reset by letting \"A=%28matrix%282%2C2%2C5%2C-2%2C4%2C7%29%29\" again (this is the coefficient matrix).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now replace the second column of A (that corresponds to the variable 'y') with the values that form the right hand side of the system of equations. We will denote this new matrix \"A%5By%5D\" (since we're replacing the 'y' column in a way).
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"A%5Bx%5D=%28matrix%282%2C2%2C5%2Chighlight%2814%29%2C4%2Chighlight%28-6%29%29%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now compute the determinant of \"A%5By%5D\" to get \"abs%28A%5By%5D%29=%285%29%28-6%29-%2814%29%284%29=-86\".
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " To find the second solution, divide the determinant of \"A%5By%5D\" by the determinant of \"A\" to get: \"y=%28abs%28A%5By%5D%29%29%2F%28abs%28A%29%29=%28-86%29%2F%2843%29=-2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the second solution is \"y=-2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " ====================================================================================
\n" ); document.write( "
\n" ); document.write( " Final Answer:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So the solutions are \"x=2\" and \"y=-2\" giving the ordered pair (2, -2)
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Once again, Cramer's Rule is dependent on determinants. Take a look at this 2x2 Determinant Solver if you need more practice with determinants.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

\n" ); document.write( "\n" ); document.write( "and bob's your uncle!
\n" ); document.write( "
\n" );