document.write( "Question 291678: Please help to answer the follwing question. \r
\n" ); document.write( "\n" ); document.write( "If the profit function for a commodity is p=6400x-18x^2-(1/3)x^3-40,000 dollars, selling how many units, x, will result in a maximum profit? Find the maximum profit. \r
\n" ); document.write( "\n" ); document.write( "(I am having troublw getting past this:
\n" ); document.write( "p'=6400-36x-x^2=0\r
\n" ); document.write( "\n" ); document.write( "Thanks!
\n" ); document.write( "

Algebra.Com's Answer #210864 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
If the profit function for a commodity is p=6400x-18x^2-(1/3)x^3-40,000 dollars, selling how many units, x, will result in a maximum profit? Find the maximum profit.
\n" ); document.write( "p'(x) = 6400 - 36x - x^2
\n" ); document.write( "----
\n" ); document.write( "Solve x^2 + 36x + 6400 = 0
\n" ); document.write( "(x+100)(x-64) = 0
\n" ); document.write( "Poxitive solution:
\n" ); document.write( "x = 64
\n" ); document.write( "p(64) = $208,491
\n" ); document.write( "----------------------
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "----------------------
\n" ); document.write( "
\n" );