document.write( "Question 290041: Find the reciprocal of each complex number.
\n" );
document.write( "-√5 - i√2\r
\n" );
document.write( "\n" );
document.write( "(the \"i\" is the imaginary number \"i\")\r
\n" );
document.write( "\n" );
document.write( "Thank You! \n" );
document.write( "
Algebra.Com's Answer #209960 by dabanfield(803)![]() ![]() ![]() You can put this solution on YOUR website! -√5 - i√2 \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The reciprocal of the number above is:\r \n" ); document.write( "\n" ); document.write( "1/((-sqrt(5) - i*sqrt(2))\r \n" ); document.write( "\n" ); document.write( "Multiply the numberator and denominaotr by the conjugate of the denominator (that is -sqrt(5) + i*sqrt(2):\r \n" ); document.write( "\n" ); document.write( "(1*(-sqrt(5) + i*sqrt(2)))/((-sqrt(5) - i*sqrt(2))*(-sqrt(5) + i*sqrt(2))) = \n" ); document.write( "(-sqrt(5) + i*sqrt(2))/((-sqrt(5)*-sqrt(5) - i^2*sqrt(2)*sqrt(2)) = \n" ); document.write( "(-sqrt(5) + i*sqrt(2))/(5 - (-2)) = \n" ); document.write( "(-sqrt(5) + i*sqrt(2))/7 \n" ); document.write( " |