document.write( "Question 4563: Let T, U: V to W be linear transformations. Prove that:
\n" );
document.write( "a. R(T+U) is a subset of R(T)+R(U).
\n" );
document.write( "b. If W is finite-dimensional, then rank(T+U)=< rank(T)+rank(U).
\n" );
document.write( "c. Deduct from b that rank(A+B)=< rank(A)+rank(B) for any m x n matrices
\n" );
document.write( "A and B. \n" );
document.write( "
Algebra.Com's Answer #2096 by khwang(438)![]() ![]() ![]() You can put this solution on YOUR website! Let T, U: V to W be linear transformations. Prove that: \n" ); document.write( "a. R(T+U) is a subset of R(T)+R(U). \n" ); document.write( "b. If W is finite-dimensional, then rank(T+U)=< rank(T)+rank(U). \n" ); document.write( "c. Deduct from b that rank(A+B)=< rank(A)+rank(B) for any m x n matrices \n" ); document.write( "A and B.\r \n" ); document.write( "\n" ); document.write( " Proof: a) x',y' are in R(T+U) \n" ); document.write( " --> there exist x,y in V such that (T+U)(x) = x', (T+U)(y) = y' \n" ); document.write( " --> x'+y'=(T+U)(x)+(T+U)(y)=(T+U)(x+y)= T(x)+U(x) + T(y)+ U(y) \n" ); document.write( " = T(x+y) + U(x+y) \n" ); document.write( " ---> x'+y' is in R(T)+R(U) \n" ); document.write( " x' is in R(T+U) and c is a scalar \n" ); document.write( " --> there exist x,y in V such that (T+U)(x) = x' \n" ); document.write( " ---> (T+U)(cx) = c(T+U)(x) = cx' = T(cx)+ U(cx) for some x in V \n" ); document.write( " --> cx' is in R(T) + R(U) \n" ); document.write( " This shows R(T+U) is a subspace of R(T)+R(U).\r \n" ); document.write( "\n" ); document.write( " b) Note T+U: V-->W is a linear transformation, \n" ); document.write( " rank(T) and rank(U) <= dim W (finite) \n" ); document.write( " Hence, rank(T) + rank(U) is finite. \n" ); document.write( " By a) R(T+U) is a subspace of R(T)+R(U), \n" ); document.write( " let W' be the intersection of R(T) and R(U). \n" ); document.write( " we have dim R(T) + dim R(U) = dim [R(T)+R(U)]+ dim(W') \n" ); document.write( " that is, rank(T) + rank(U) = rank(T+U) + dim(W') \n" ); document.write( " Hence, rank(T+U) <= rank(T)+rank(U)\r \n" ); document.write( "\n" ); document.write( " c) Consider \n" ); document.write( " Define two linear transformations T, U from R^n to R^m \n" ); document.write( " (or from F^n to F^m, column vectors of size n or m) \n" ); document.write( " by T(ei) = E Aij fj and U(ei) = E Bij fj, \n" ); document.write( " (where E means sumation){ei+i=1,,..,n} {fj|j=1,2,..m} are \n" ); document.write( " standard basis of R^n & R^m resp. \n" ); document.write( " Since rank(T) = rank(A) and rank(U) = rank(B) \n" ); document.write( " By b), we have rank(T+U) <= rank(T)+rank(U) \n" ); document.write( " Hence , rank(A+B)<= rank(A)+rank(B) for any m x n matrices \n" ); document.write( " A and B. \n" ); document.write( " \n" ); document.write( " Kenny \n" ); document.write( " PS. You have to use the theorems in the text tofill some details. \n" ); document.write( " In a) R(T+U) should be a subspace ofR(T)+R(U) , \n" ); document.write( " as a subset does not make much sense \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |