document.write( "Question 288311: the altitude of a right triangle splits the hypotenuse into two segments of length 4 and 16. what is the length of the altitude? \n" ); document.write( "
Algebra.Com's Answer #208979 by dabanfield(803)![]() ![]() ![]() You can put this solution on YOUR website! Let x and y be the two legs of the rigth triables and a be the altitute. The altitute a creates two more right triable, one with sides a, 4 and hypotenuse y and theother with sdes a, 16 and hypotenuse x.\r \n" ); document.write( "\n" ); document.write( "From the Pythagorean Theorem we have then:\r \n" ); document.write( "\n" ); document.write( "x^2 + y ^2 = (16 + 4)^2 or \n" ); document.write( "1.) x^2 + y^2 = 400\r \n" ); document.write( "\n" ); document.write( "We also have:\r \n" ); document.write( "\n" ); document.write( "2.) y^2 = a^2 + 4^2 and \n" ); document.write( "3.) x^2 = a^2 + 16^2\r \n" ); document.write( "\n" ); document.write( "Adding the two equations above we have:\r \n" ); document.write( "\n" ); document.write( "x^2 + y^2 = 2*a^2 + 4^2 + 16^2 or\r \n" ); document.write( "\n" ); document.write( "4.) x^2 + y^2 = 2*a^2 + 272\r \n" ); document.write( "\n" ); document.write( "From 1.) we have x^2 + y^2 = 400 so 4.) becomes:\r \n" ); document.write( "\n" ); document.write( "400 = 2*a^2 + 272 \n" ); document.write( "2*a^2 = 400 - 272 \n" ); document.write( "2*a^2 = 128 \n" ); document.write( "a^2 = 64 \n" ); document.write( "a = sqrt(64) \n" ); document.write( "a = 8\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |