document.write( "Question 287526: Find a function f such that the graph of f has a horizontal tangent at (2, 0) and f ''(x) = 4x.\r
\n" );
document.write( "\n" );
document.write( "f(x) = ? \n" );
document.write( "
Algebra.Com's Answer #208328 by nabla(475)![]() ![]() ![]() You can put this solution on YOUR website! Integrate (find the antiderivative) twice:\r \n" ); document.write( "\n" ); document.write( "f'(x)=2x^2+C \n" ); document.write( "f(x)=(2/3)x^3+Cx+D\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now, f has a horizontal tangent at (2,0) IE the function attains a local extrema and f'(2)=0\r \n" ); document.write( "\n" ); document.write( "hence\r \n" ); document.write( "\n" ); document.write( "f'(2)=2*2^2+C=0 \n" ); document.write( "implies C=-8.\r \n" ); document.write( "\n" ); document.write( "Now we have f(x)=(2/3)x^3-8x+D.\r \n" ); document.write( "\n" ); document.write( "But we know f(2)=0, so, (2/3)2^3-8(2)+D=0 \n" ); document.write( "16/3-48/3=-D \n" ); document.write( "-32/3=-D\r \n" ); document.write( "\n" ); document.write( "implies 32/3=D. \r \n" ); document.write( "\n" ); document.write( "This gives our final function as\r \n" ); document.write( "\n" ); document.write( "f(x)=(2/3)x^3-8x+32/3. \n" ); document.write( " |