document.write( "Question 286352: [(6x-x^2-6)/(x-1)]-[(2x-3)/(x-1)]=1\r
\n" );
document.write( "\n" );
document.write( "I worked it out and come up with x=2 and x=1 When I plug these numbers in neither one is actually true. What am i doing wrong? \n" );
document.write( "
Algebra.Com's Answer #207664 by subudear(62)![]() ![]() ![]() You can put this solution on YOUR website! [(6x-x^2-6)/(x-1)]-[(2x-3)/(x-1)]=1 \n" ); document.write( "[-(x^2-6x+6)/(x-1)]-[(2x-3)/(x-1)]=1 \n" ); document.write( "Now (x-1) is common denominator so we can write\r \n" ); document.write( "\n" ); document.write( "[-(x^2-6x+6)-(2x-3)]/(x-1)=1 \n" ); document.write( "[-x^2 + 6x - 6 - 2x + 3]/(x-1)=1 \n" ); document.write( "[-x^2 +4x -3]/(x-1)=1 \n" ); document.write( "[-(x^2 -4x +3)]/(x-1)=1 \n" ); document.write( "[-(x^2 -4x +3)]=x-1 \n" ); document.write( "-x^2 +4x -3 -x +1 =0 \n" ); document.write( "-x^2 +3x -2 =0 \n" ); document.write( "-(x^2 -3x +2) =0 \n" ); document.write( "do factors of (x^2 -3x +2)\r \n" ); document.write( "\n" ); document.write( "(x^2 -3x +2) = x^2 -2x-x +2 = x(x-2)-(x-2) = (x-2)(x-1) \n" ); document.write( "replacing the values we get\r \n" ); document.write( "\n" ); document.write( "-(x-2)(x-1)=0\r \n" ); document.write( "\n" ); document.write( "so x =1,2 but x =1 cannot be the answer as the equation will be undefined for x=1 so x=2 is the only answer.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |