document.write( "Question 284724: The radius of a cylinder is increased by 40%, but the height is cut in half.
\n" ); document.write( "What is the resulting change in volume?\r
\n" ); document.write( "\n" ); document.write( "A.2% decrease B. 30% decrease C. 30% increase D. 2% increase
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #206552 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
let r be the radius \r
\n" ); document.write( "\n" ); document.write( "h the height\r
\n" ); document.write( "\n" ); document.write( "volume of cylinder = pi*r^2*h\r
\n" ); document.write( "\n" ); document.write( "r is increased by 40 %\r
\n" ); document.write( "\n" ); document.write( "new radius = 1.4\r
\n" ); document.write( "\n" ); document.write( "new height = 0.5h\r
\n" ); document.write( "\n" ); document.write( "new volume = pi*(1.4r)^2 * 0.5h\r
\n" ); document.write( "\n" ); document.write( "original volume / new volume = pi*r^2*h / pi* (1.4r)^2*0.5h\r
\n" ); document.write( "\n" ); document.write( "= 1/(1.4)^2*0.5)
\n" ); document.write( "=1.02\r
\n" ); document.write( "\n" ); document.write( "meaning 2 % increase\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );