document.write( "Question 282083: Factor completely. Show all work neccessary.\r
\n" ); document.write( "\n" ); document.write( "x^2 - 14x + 49
\n" ); document.write( "

Algebra.Com's Answer #205383 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2-14x%2B49\", we can see that the first coefficient is \"1\", the second coefficient is \"-14\", and the last term is \"49\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"49\" to get \"%281%29%2849%29=49\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"49\" (the previous product) and add to the second coefficient \"-14\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"49\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"49\":\r
\n" ); document.write( "\n" ); document.write( "1,7,49\r
\n" ); document.write( "\n" ); document.write( "-1,-7,-49\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"49\".\r
\n" ); document.write( "\n" ); document.write( "1*49 = 49
\n" ); document.write( "7*7 = 49
\n" ); document.write( "(-1)*(-49) = 49
\n" ); document.write( "(-7)*(-7) = 49\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-14\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1491+49=50
777+7=14
-1-49-1+(-49)=-50
-7-7-7+(-7)=-14
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-7\" and \"-7\" add to \"-14\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-7\" and \"-7\" both multiply to \"49\" and add to \"-14\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-14x\" with \"-7x-7x\". Remember, \"-7\" and \"-7\" add to \"-14\". So this shows us that \"-7x-7x=-14x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28-7x-7x%29%2B49\" Replace the second term \"-14x\" with \"-7x-7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2-7x%29%2B%28-7x%2B49%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-7%29%2B%28-7x%2B49%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-7%29-7%28x-7%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-7%29%28x-7%29\" Combine like terms. Or factor out the common term \"x-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-7%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2-14x%2B49\" factors to \"%28x-7%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E2-14x%2B49=%28x-7%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x-7%29%5E2\" to get \"x%5E2-14x%2B49\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );