document.write( "Question 282643: x^2 + 30x + 225. Factor completly. \n" ); document.write( "
Algebra.Com's Answer #205209 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2%2B30x%2B225\", we can see that the first coefficient is \"1\", the second coefficient is \"30\", and the last term is \"225\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"225\" to get \"%281%29%28225%29=225\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"225\" (the previous product) and add to the second coefficient \"30\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"225\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"225\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,9,15,25,45,75,225\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-9,-15,-25,-45,-75,-225\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"225\".\r
\n" ); document.write( "\n" ); document.write( "1*225 = 225
\n" ); document.write( "3*75 = 225
\n" ); document.write( "5*45 = 225
\n" ); document.write( "9*25 = 225
\n" ); document.write( "15*15 = 225
\n" ); document.write( "(-1)*(-225) = 225
\n" ); document.write( "(-3)*(-75) = 225
\n" ); document.write( "(-5)*(-45) = 225
\n" ); document.write( "(-9)*(-25) = 225
\n" ); document.write( "(-15)*(-15) = 225\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"30\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
12251+225=226
3753+75=78
5455+45=50
9259+25=34
151515+15=30
-1-225-1+(-225)=-226
-3-75-3+(-75)=-78
-5-45-5+(-45)=-50
-9-25-9+(-25)=-34
-15-15-15+(-15)=-30
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"15\" and \"15\" add to \"30\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"15\" and \"15\" both multiply to \"225\" and add to \"30\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"30x\" with \"15x%2B15x\". Remember, \"15\" and \"15\" add to \"30\". So this shows us that \"15x%2B15x=30x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%2815x%2B15x%29%2B225\" Replace the second term \"30x\" with \"15x%2B15x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B15x%29%2B%2815x%2B225%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B15%29%2B%2815x%2B225%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B15%29%2B15%28x%2B15%29\" Factor out \"15\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B15%29%28x%2B15%29\" Combine like terms. Or factor out the common term \"x%2B15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B15%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2B30x%2B225\" factors to \"%28x%2B15%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E2%2B30x%2B225=%28x%2B15%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B15%29%5E2\" to get \"x%5E2%2B30x%2B225\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );